As an energy-saving technology, the ejector is widely used in the heating, aerospace, and chemical industry. The ejector performance is closely related to its structure, so the structure of the ejector needs to be optimized. In the present study, single-factor optimization is first carried out, and the main structural parameters affecting the ejector performance are screened out. Then, the response surface method is used to analyze the combined effect of the multiple structural parameters of the ejector, find out the optimal structure, and analyze the flow field inside the ejector. This study shows that, through numerical simulation, the ejector performance obtained by the response surface method is better than that obtained by the single-factor optimization method or theoretically designed ejector, and the ejector performance is 35.4% higher than that of the theoretically designed ejector. Moreover, the optimal structure of the ejector obtained by the response surface method has high reliability, and the difference between the simulation result and the prediction result of the response surface method is 0.96%.