The communication process of devices in IoV under cloud architecture needs to be protected by access control models. However, existing access control models have difficulty establishing the appropriate granularity of permissions in the face of large amounts of data in IoV. Moreover, the access control model may need to temporarily change user privileges to accommodate the dynamic nature of IoV scenarios, a requirement that is difficult to implement for traditional access control models. The unstable connection status of devices in IoV also creates problems for access control. The service (composed of role and attribute) based access control model (in IoV) S-RABAC (V), under the Cloud computing architecture, introduces a formal theoretical model. The model uses attribute grouping and prioritization mechanisms to form a hierarchical structure. The permission combination pattern in the hierarchical structure can avoid duplicate permissions and reduce the number of permissions while ensuring fine-grained permissions. Different layers in the model have different priorities, and when a user’s permission requires temporary changes, it can be adjusted to the corresponding layers according to the user’s priority. In addition, users are allowed to keep their assigned privileges for a period to avoid frequent access control because of unstable connections. We have implemented the proposed access control model in Alibaba Cloud Computing and given six example demonstrations. The experiment shows that this is an access control model that can protect IoV security more effectively. Various unique mechanisms in the model enable S-RABAC(V) to improve the overall access control efficiency. The model adds some extra features compared to ABAC and RBAC and can generate more access control decisions using the priority mechanism.