Recently, there has been a focus on natural and man-made disasters with a high-impact low-frequency (HILF) property in electric power systems. A power system must be built with “resilience” or the ability to withstand, adapt and recover from disasters. The resilience metrics (RMs) are tools to measure the resilience level of a power system, normally employed for resilience cost–benefit in planning and operation. While numerous RMs have been presented in the power system literature; there is still a lack of comprehensive framework regarding the different types of the RMs in the electric power system, and existing frameworks have essential shortcomings. In this paper, after an extensive overview of the literature, a conceptual framework is suggested to identify the key variables, factors and ideas of RMs in power systems and define their relationships. The proposed framework is compared with the existing ones, and existing power system RMs are also allocated to the framework’s groups to validate the inclusivity and usefulness of the proposed framework, as a tool for academic and industrial researchers to choose the most appropriate RM in different power system problems and pinpoint the potential need for the future metrics.