In this work, a theoretical model is developed for n-p-n mid-infrared transistor laser (TL) with strain-balanced Ge 0.85 Sn 0.15 multiple quantum well (MQW) structure in the base. Variation of optical confinement factor, modal gain and threshold current density have been rigorously investigated for different number of QWs (N) in MQW structure. The result shows that overall optical confinement factor and modal gain increase with N. The frequency response of MQWTL for common base (CB) configuration is estimated from small signal relationship between the photon density and emitter current density by solving laser rate equation and continuity equation considering the virtual states as a conversion mechanism. Increment of N causes modulation bandwidth to initially increase and then decreases with N, which reveals a shifting of device nature for higher values of N. The results also suggest that on judicious selection of N, the proposed device can become a viable monolithic light source.