The last years have been characterized by strong market exploitation of the Internet of Things (IoT) technologies in different application domains, such as Industry 4.0, smart cities, and eHealth. All the relevant solutions should properly address the security issues to ensure that sensor data and actuators are not under the control of malicious entities. Additionally, many applications should at the same time provide low-latency communications, as in the case for instance of remote control of industrial robots. Low latency and security are two of the most important challenges to be addressed for the successful deployment of IoT applications.These issues have been analyzed by several scientific papers and surveys that appeared in the last decade. However, few of them consider the two challenges jointly. Moreover, the security aspects are primarily investigated only in specific application domains or protocol levels and the latency issues are typically investigated only at low layers (e.g., physical, access). This paper addresses this shortcoming and provides a systematic review of state-of-the-art solutions for providing fast and secure IoT communications. Although the two requirements may appear to be in contrast to each other, we investigate possible integrated solutions that minimize device connection and service provisioning. We follow an approach where the proposals are reviewed by grouping them based on the reference architectural layer, i.e., access, network, and application layers. We also review the works that propose promising solutions that rely on the exploitation of the QUIC protocol at the higher levels of the protocol stack.