<abstract>
<p>The growing demand for energy, driven by rapid economic development, necessitates higher electricity consumption. However, conventional energy systems relying on fossil fuels present environmental challenges, prompting a shift towards renewable energy sources. In Kosovo, coal-fired power plants dominate electricity production, highlighting the need for cleaner alternatives. Worldwide efforts are underway to increase the efficiency of photovoltaic systems using sustainable materials, essential for ecological and human health. Solar and wind energy are emerging as sustainable alternatives to traditional fossil fuels. However, global concerns about energy security and environmental sustainability are driving countries to prioritize renewable energy development.</p>
<p>In Kosovo, the integration of renewable energy sources, such as wind and solar energy, is progressing rapidly. However, challenges such as voltage stability and power losses need to be addressed. Distributed generation offers a solution by increasing energy reliability and reducing greenhouse gas emissions. Further research is needed to assess the technical, economic, and environmental implications of integrating renewable resources into Kosovo's energy system, focusing on power quality, system reliability, and voltage stability. The research focused on the eastern region of the country, operating at the 110 kV substation level. Challenges in energy quality arise due to the lack of 400 kV supply and the continuous increase in energy consumption, especially in the Gjilan area. This paper investigated integrating renewable energy, especially wind and solar sources, into the medium- and long-term plans at the Gjilan 5 substation to enhance energy quality in the area. Successful integration requires detailed analysis of energy flows, considering the impact of photovoltaics (PVs) on distribution system operation and stability. To simulate and analyze the effects of renewables on the transmission system, voltage profile, and power losses, a case study was conducted using ETAP software. The simulation results present a comparison between scenarios before and after integrating renewable systems to improve energy quality in the identified area.</p>
</abstract>