In this paper, the performance of the millimeter-wave (mmWave) massive multiple-input multiple-output (mMIMO) non-orthogonal multiple access (NOMA) systems is investigated under multiple user scenarios. The performance of the system has been analyzed in terms of spectral efficiency (SE), energy efficiency (EE), and computational complexity. In the case of the mMIMO system, the linear precoder with matrix inversion becomes less efficient due to its high computational complexity. Therefore, the design of a low-complex hybrid precoder (HP) is the main aim of this paper. Here, the authors have proposed a symmetric successive over-relaxation (SSOR) complex regularized zero-forcing (CRZF) linear precoder. Through simulation, this paper demonstrates that the proposed SSOR-CRZF-HP performs better than the conventional linear precoder with reduced complexity.