Recently, coherent-detection (CoD) polarization multiplexed (PM) transmission has attracted considerable interest, specifically as a possible solution for next-generation systems transmitting 100 Gb/s per channel and beyond. In this context, enabled by progress in ultra-fast digital signal processing (DSP) electronics, both multilevel phase/amplitude modulated formats (such as QAM) and orthogonal-frequency-division multiplexed (OFDM) formats have been proposed. One specific feature of DSP-supported CoD is the possibility of dealing with fiber chromatic dispersion (CD) electronically, either by post-filtering (PM-QAM) or by appropriately introducing symbol-duration redundancy (PM-OFDM). In both cases, ultra-long-haul fully uncompensated links seem to be possible. In this paper we estimate the computational effort required by CD compensation, when using the PM-QAM or PM-OFDM formats. Such effort, when expressed as number of operations per received bit, was found to be logarithmic with respect to link length, bit rate and fiber dispersion, for both classes of systems. We also found that PM-OFDM may have some advantage over PM-QAM, depending mostly on the over-sampling needed by the two systems. Asymptotically, for large channel memory and small over-sampling, the two systems tend to require the same CD-compensation computational effort. We also showed that the effort required by the mitigation of polarization-related effects can in principle be made small as compared to that of CD over long uncompensated links.