Image fusion is used to enhance the quality of images by combining two images of same scene obtained from different techniques. In medical diagnosis by combining the images obtained by Computed Tomography (CT) scan and Magnetic Resonance Imaging (MRI) we get more information and additional data from fused image. This paper presents a hybrid technique using curvelet and wavelet transform used in medical diagnosis. In this technique the image is segmented into bands using wavelet transform, the segmented image is then fused into sub bands using curvelet transform which breaks the bands into overlapping tiles and efficiently converting the curves in images using straight lines. These tiles are integrated together using inverse wavelet transform to produce a highly informative fused image. Wavelet based fusion extracts spatial details from high resolution bands but its limitation lies in the fusion of curved shapes. Therefore for better information and higher resolution on curved shapes we are blending wavelet transform with curvelet transform as we know that curvelet transform deals effectively with curves areas, corners and profiles. These two fusion techniques are extracted and then fused implementing hybrid image fusion algorithm, findings shows that fused image has minimum errors and present better quality results. The peak signal to noise ratio value for the hybrid method was higher in comparison to that of wavelet and curvelet transform fused images. Also we get improved statistics results in terms of Entropy, Peak signal to noise ratio, correlation coefficient, mutual information and edge association. This shows that the quality of fused image was better in case of hybrid method.