2019 European Navigation Conference (ENC) 2019
DOI: 10.1109/euronav.2019.8714173
|View full text |Cite
|
Sign up to set email alerts
|

Performance Analysis of Using the Next generation Australian SBAS with Precise Point Positioning Capability For Intelligent Transport Systems

Abstract: In 2018, a next-generation Satellite-Based Augmentation System (SBAS) test-bed was launched in Australia/New-Zealand in preparation for building an operational system. This new generation SBAS includes L1 legacy SBAS, new dual-frequency multi-constellation (DFMC) SBAS, and orbit and clock corrections for precise point positioning (PPP) using GPS and Galileo. In this paper, the next generation SBAS and its models are first presented, and the benefits of using its new components are discussed. Test results for l… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 9 publications
0
1
0
Order By: Relevance
“…Figure 9 shows two examples of applying the new generation DFMC and floatambiguity PPP SBAS in the open-sky (left panel) and semi-urban (right panel) environments. Analysis of results shows that the new SBAS DFMC solutions have slightly better accuracy than the SBAS L1 solutions, but both generate errors between sub-m to more than 2 m. In addition, the multi-constellation PPP solutions have shown to provide the best positioning precision and accuracy among all the tested solution types (L1 SBAS, DFMC SBAS, and SBAS-based PPP) with subdecimeter level standard deviations after solution convergence [35], provided that enough convergence time is available, which may take up to 30 min. Testing clearly demonstrates that positioning performance of both DFMC SBAS and PPP methods is strongly dependent on the environment of the application, which is linked to the strength of the satellite geometry, number of observed satellites, the presence of multipath and NLOS.…”
Section: Testing Sbas For Itsmentioning
confidence: 95%
“…Figure 9 shows two examples of applying the new generation DFMC and floatambiguity PPP SBAS in the open-sky (left panel) and semi-urban (right panel) environments. Analysis of results shows that the new SBAS DFMC solutions have slightly better accuracy than the SBAS L1 solutions, but both generate errors between sub-m to more than 2 m. In addition, the multi-constellation PPP solutions have shown to provide the best positioning precision and accuracy among all the tested solution types (L1 SBAS, DFMC SBAS, and SBAS-based PPP) with subdecimeter level standard deviations after solution convergence [35], provided that enough convergence time is available, which may take up to 30 min. Testing clearly demonstrates that positioning performance of both DFMC SBAS and PPP methods is strongly dependent on the environment of the application, which is linked to the strength of the satellite geometry, number of observed satellites, the presence of multipath and NLOS.…”
Section: Testing Sbas For Itsmentioning
confidence: 95%