In this paper, a hybrid backhaul architecture, which is based on wavelength-division multiplexing passive optical networks (WDM-PON) and millimeter-wave (MMW) communications, is proposed to deliver orthogonal frequency-division multiplexing (OFDM) signals in heterogeneous wireless networks. MMW radio-over-fiber (RoF) technique, which combines the advantages of the both optical fiber and wireless communications, is used to simplify the base stations and provide flexibility long reach and high capacity connections. The feasibility of the proposed hybrid backhaul architecture is investigated via the bit-error rate (BER) performance of a downlink under the impacts of fiber nonlinear, wireless fading and noise components including clipping noise, amplifier noise and photodetector noise. The numerical results obtained from this study help to determine the optimum system parameters such as the optical launched power, modulation index, and amplifier gain so as to minimize the link’s BER.