2023
DOI: 10.1155/2023/5542049
|View full text |Cite
|
Sign up to set email alerts
|

Performance Augmentation of Base Classifiers Using Adaptive Boosting Framework for Medical Datasets

Durr e Nayab,
Rehan Ullah Khan,
Ali Mustafa Qamar

Abstract: This paper investigates the performance enhancement of base classifiers within the AdaBoost framework applied to medical datasets. Adaptive boosting (AdaBoost), being an instance of boosting, combines other classifiers to enhance their performance. We conducted a comprehensive experiment to assess the efficacy of twelve base classifiers with the AdaBoost framework, namely, Bayes network, decision stump, ZeroR, decision tree, Naïve Bayes, J-48, voted perceptron, random forest, bagging, random tree, stacking, an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 33 publications
0
0
0
Order By: Relevance