2021
DOI: 10.11591/ijai.v10.i2.pp452-457
|View full text |Cite
|
Sign up to set email alerts
|

Performance comparison between naive bayes and k- nearest neighbor algorithm for the classification of Indonesian language articles

Abstract: <span id="docs-internal-guid-210930a7-7fff-b7fb-428b-3176d3549972"><span>The match between the contents of the article and the article theme is the main factor whether or not an article is accepted. Many people are still confused to determine the theme of the article appropriate to the article they have. For that reason, we need a document classification algorithm that can group the articles automatically and accurately. Many classification algorithms can be used. The algorithm used in this study i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
2

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 21 publications
0
1
0
2
Order By: Relevance
“…Beberapa peneliti mencoba untuk meningkatkat algoritma ini dengan beberapa model klasifikasi. Stemming memberikan dampak terhadap perfomansi waktu (cost reduction) dalam menjalankan model klasifikasi seperti Naïve Bayes (Winarti et al, 2021), K-NN (Utomo et al, 2020), SVM (Utami et al, 2019), dan model lainnya.…”
Section: Penelitian Terdahuluunclassified
“…Beberapa peneliti mencoba untuk meningkatkat algoritma ini dengan beberapa model klasifikasi. Stemming memberikan dampak terhadap perfomansi waktu (cost reduction) dalam menjalankan model klasifikasi seperti Naïve Bayes (Winarti et al, 2021), K-NN (Utomo et al, 2020), SVM (Utami et al, 2019), dan model lainnya.…”
Section: Penelitian Terdahuluunclassified
“…To date, most of the text classification methods generally used to assign multiple topics to documents [6], grouping of documents into a fixed number of predefined classes [7], sentiment analysis to determine the viewpoint/polarity of a writer with respect to some topic [8], spam filtering of emails [9], automatic hate speech detection [10]. In the era of big data, the increasing number of complex documents makes traditional machine learning methods difficult to implement because conventional learning processes are not designed for big data and will not work properly with high data volumes.…”
Section: Introductionmentioning
confidence: 99%
“…Kelebihan dari algoritma K-NN adalah pelatihan sangat cepat, sederhana, dan mudah dipelajari, tahan terhadap data training yang memiliki noise, dan efektif jika data training-nya besar [6]. Algoritma K-NN dapat memberikan kinerja yang baik karena algoritma tersebut tahan terhadap noise data [7]. K-NN termasuk kedalam metode machine learning karena melibatkan data masa lalu untuk memprediksi data masa depan.…”
unclassified