This study primarily aimed to develop an automated stuttering identification and classification method using artificial intelligence technology. In particular, this study aimed to develop a deep learning-based identification model utilizing the convolutional neural networks (CNNs) algorithm for Korean speakers who stutter. To this aim, speech data were collected from 9 adults who stutter and 9 normally-fluent speakers. The data were automatically segmented at the phrasal level using Google Cloud speech-to-text (STT), and labels such as 'fluent', 'blockage', prolongation', and 'repetition' were assigned to them. Mel frequency cepstral coefficients (MFCCs) and the CNN-based classifier were also used for detecting and classifying each type of the stuttered disfluency. However, in the case of prolongation, five results were found and, therefore, excluded from the classifier model. Results showed that the accuracy of the CNN classifier was 0.96, and the F1-score for classification performance was as follows: 'fluent' 1.00, 'blockage' 0.67, and 'repetition' 0.74. Although the effectiveness of the automatic classification identifier was validated using CNNs to detect the stuttered disfluencies, the performance was found to be inadequate especially for the blockage and prolongation types. Consequently, the establishment of a big speech database for collecting data based on the types of stuttered disfluencies was identified as a necessary foundation for improving classification performance.