2022
DOI: 10.13064/ksss.2022.14.4.035
|View full text |Cite
|
Sign up to set email alerts
|

Performance comparison on vocal cords disordered voice discrimination via machine learning methods*

Abstract: This paper studies how to improve the identification rate of laryngeal disability speech data by convolutional neural network (CNN) and machine learning ensemble learning methods. In general, the number of laryngeal dysfunction speech data is small, so even if identifiers are constructed by statistical methods, the phenomenon caused by overfitting depending on the training method can lead to a decrease the identification rate when exposed to external data. In this work, we try to combine results derived from C… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 16 publications
0
0
0
Order By: Relevance
“…터 획득이 가능해지면서 CNN(convolutional neural network)을 적용한 장애 음성 식별 연구사례들이 보고되었다(cf. Bhushan et al, 2021;Fang et al, 2019;Jo et al, 2022;Prabhu & Seliya, 2022) (1)…”
Section: 최근에는 인공신경망의 다양한 도구가 보급되고 공통 데이unclassified
See 1 more Smart Citation
“…터 획득이 가능해지면서 CNN(convolutional neural network)을 적용한 장애 음성 식별 연구사례들이 보고되었다(cf. Bhushan et al, 2021;Fang et al, 2019;Jo et al, 2022;Prabhu & Seliya, 2022) (1)…”
Section: 최근에는 인공신경망의 다양한 도구가 보급되고 공통 데이unclassified
“…일반적으로 말더듬 평가는 빈도나 비율에 기 반한 청지각적 판단을 필수적으로 고려하여 수행된다 (Tichenor et al, 2022). 하지만 평가 수행에 있어 긴 소요시간과 평가자 간 신뢰도(reliability) 문제가 야기될 수 있다 (Kully & Boberg, 1988;Yaruss, 1997) (Jo et al, 2022).…”
unclassified