2012
DOI: 10.1109/tasl.2011.2170970
|View full text |Cite
|
Sign up to set email alerts
|

Performance Control Driven Violin Timbre Model Based on Neural Networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
1

Year Published

2015
2015
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(4 citation statements)
references
References 16 publications
0
3
0
1
Order By: Relevance
“…Carillo vd. (2012) bir kemancı tarafından gerçekleştirilen eylemler ile bu eylemlerin ürettiği ses arasındaki ilişkiyi modellemeyi amaçlamışlardır [61]. Bunun için sinir ağları tabanlı bir keman tını modeli önermişlerdir.…”
Section: Literatür İncelemesiunclassified
“…Carillo vd. (2012) bir kemancı tarafından gerçekleştirilen eylemler ile bu eylemlerin ürettiği ses arasındaki ilişkiyi modellemeyi amaçlamışlardır [61]. Bunun için sinir ağları tabanlı bir keman tını modeli önermişlerdir.…”
Section: Literatür İncelemesiunclassified
“…In the area of bowed-string instruments, pioneer musical research analyzed sound features with bowing machines by focusing on physical control variables such as bow force and bow velocity but without considering the musician’s body 30 – 33 . Other studies assessed the instrumentalists’ auditory-motor mappings by means of motion and sound synthesis techniques with an electric violin 34 – 36 . More recently, psycholinguistic studies explored violinists’ cognitive processes by correlating perceptual adjectives of violin sounds ( round, harsh, light, mellow, dark, etc. )…”
Section: Introductionmentioning
confidence: 99%
“…Understanding such interaction is a field with growing interest, driven in recent years by technological advances that have allowed the emergence of more accurate yet less expensive measuring devices. The ability to measure the actions that control a musical instrument (i.e., instrument control parameters) has applications in many areas of knowledge, such as acoustics (Schoonderwaldt et al, 2008), music pedagogy (Visentin et al, 2008), sound synthesis (Erkut et al, 2000;Maestre et al, 2010;Pérez-Carrillo et al, 2012), augmented performances (Wanderley and Depalle, 2004;Bevilacqua et al, 2011), or performance transcription (Zhang and Wang, 2009).…”
Section: Introductionmentioning
confidence: 99%