The research presented in this article concerns the thermal properties of multilayer protective clothing, specifically, the impact of phase-change material (PCM) incorporation on the occurring heat transfer. Multilayer textile assemblies with PCM inserts (macrocapsules containing n-octadecane) and reference assemblies with PP inserts (macrogranules from polypropylene) with very similar geometry and the same textile layers were tested. The spatial geometry of tested assemblies was examined using high-resolution X-ray microtomography (micro-CT). The heating process of the assemblies was examined under the conditions of exposure to contact heat (using thermography) and radiant heat (using a copper plate calorimeter, according to EN ISO 6942). PCM-containing assemblies achieved a temperature rise of 12 °C in a longer period than the reference assemblies; for the contact heat method, the time was longer by 11 and 14 min, and for the radiant heat method by 1.7 and 2.1 min.