Background
Although robotic manipulators have great potential in promoting motor independence of people with motor impairments, only few systems are currently commercially available. In addition to technical, economic, and normative barriers, a key challenge for their distribution is the current lack of evidence regarding their usefulness, acceptance, and user-specific requirements.
Objective
Against this background, a semiautonomous robot system was developed in the research and development project, robot-assisted services for individual and resource-oriented intensive and palliative care of people with amyotrophic lateral sclerosis (ROBINA), to support people with amyotrophic lateral sclerosis (ALS) in various everyday activities.
Methods
The developed early-stage demonstrator was evaluated in a task-based laboratory study of 11 patients with ALS. On the basis of a multimethod design consisting of standardized questionnaires, open-ended questions, and observation protocols, participants were asked about its relevance to everyday life, usability, and design requirements.
Results
Most participants considered the system to provide relevant support within the test scenarios and for their everyday life. On the basis of the System Usability Scale, the overall usability of the robot-assisted services for individual and resource-oriented intensive and palliative care of people with ALS system was rated as excellent, with a median of 90 (IQR 75-95) points. Moreover, 3 central areas of requirements for the development of semiautonomous robotic manipulators were identified and discussed: requirements for semiautonomous human-robot collaboration, requirements for user interfaces, and requirements for the adaptation of robotic capabilities regarding everyday life.
Conclusions
Robotic manipulators can contribute to increase the autonomy of people with ALS. A key issue for future studies is how the existing ability level and the required robotic capabilities can be balanced to ensure both high user satisfaction and effective and efficient task performance.