2000
DOI: 10.1016/s0167-8191(99)00096-4
|View full text |Cite
|
Sign up to set email alerts
|

Performance evaluation of a parallel tabu search task scheduling algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0
3

Year Published

2002
2002
2018
2018

Publication Types

Select...
5
4

Relationship

1
8

Authors

Journals

citations
Cited by 22 publications
(13 citation statements)
references
References 16 publications
0
10
0
3
Order By: Relevance
“…Los trabajos en (Porto and Ribeiro, 1995;Porto et al, 2000) proponen tabu search (TS) (Glover, 1986) para desplegar tareas en computadores y crear planificaciones no expulsoras en sistemas de tiempo real distribuidos con el objetivo de minimizar el tiempo total de la planificación pero no el número de computadores usados. En (Chen and Lin, 2000) se usa TS para desplegar tareas en computadores con el objetivo de minimizar el tráfico de red y el número de computadores usados pero sin llevar a cabo una planificación explícita.…”
Section: Trabajos Relacionadosunclassified
“…Los trabajos en (Porto and Ribeiro, 1995;Porto et al, 2000) proponen tabu search (TS) (Glover, 1986) para desplegar tareas en computadores y crear planificaciones no expulsoras en sistemas de tiempo real distribuidos con el objetivo de minimizar el tiempo total de la planificación pero no el número de computadores usados. En (Chen and Lin, 2000) se usa TS para desplegar tareas en computadores con el objetivo de minimizar el tráfico de red y el número de computadores usados pero sin llevar a cabo una planificación explícita.…”
Section: Trabajos Relacionadosunclassified
“…The short term memory consists of a tabu list that stores information regarding the most recently accessed solutions, so that, any solutions matching a case in the tabu list are summarily rejected. The following publications reviewed some task planning cases in which the application of these algorithms had an effective result (Chambers & Barnes, 1996;Porto, Kitajima, & Ribeiro, 1996;Taillard, 1994).…”
Section: Tabu Searchmentioning
confidence: 99%
“…As a result, it is necessary to either resort to heuristics to solve optimization problems (Wu et al, 2002) in which the parameters of the objective function are calculated, or to combine heuristic techniques with linear programming to solve these types of problems (Verter & Dincer, 1992). It is advisable to use metaheuristic techniques (Kim & Park, 2004;Kolonko, 2009;Porto, Kitajima, & Ribeiro, 1996;Taillard, 1994) to solve these types of problems, as they can obtain efficient solutions in reasonable execution times.…”
Section: Introductionmentioning
confidence: 99%
“…The problem becomes more complicated due to non deterministic nature of task application model and heterogeneous resource environments. A plethora of heuristics such as clustering algorithms (Palis et al 1996, Topcuoglu et al 2002, list scheduling algorithms (Augonnet et al 2011, Topcuoglu et al 1999, task duplication based algorithms (Hagras & Janeèek 2005, Park & Choe, 2001, Ranaweera & Agrawal, 2000, genetic algorithms (Oh&Wu, 2004, Ulusoy 2004, simulated annealing (Braun et al 2001, Kazem et al 2008, Wanneng & Shijue 2006, tabu search (Porto et al 2000, Porto & Ribeiro 1995 and particle swam optimization (Jarboui et al 2008, Salman et al 2002 have been proposed in literature for the optimal solution of scheduling problem. Static (Shirazi et al 1990) as well as dynamic scheduling (Page & Naughton 2005, Rotithor 1994 schemes are generally employed for the optimal solution.…”
Section: Introductionmentioning
confidence: 99%