The recycled plastic pin (RPP) is made from recycled plastics and waste materials (i.e., polymer, sawdust, fly ash, etc.). It is a lightweight material and is less susceptible to chemical and biological degradation than the alternative reinforcing element. RPPs are driven into the slope face and provide additional resistance along the slip surface which increases the factor of safety against shallow slope failure. The current paper summarizes a case study using RPPs to repair highway slopes, investigating the use of a finite element method, and summarizes a design method. The highway slope was located over US 287 near the St. Paul overpass in Midlothian, Texas. The surficial movement had taken place over the slope, resulting in cracks over the shoulder near the bridge abutment. Three 15.2-m sections over the slope were reinforced using RPPs. After RPP installation, the slope was instrumented with inclinometers, rain gauges, moisture sensors, and water potential probes, and was monitored periodically. The performance monitoring results indicated that RPP provides resistance in the slope constructed using highly plastic clay. Further analysis of the slope using finite element analysis indicates that RPP can significantly improve the marginal slopes to a factor of safety more than 2.0. Finally, a simple design chart is presented to calculate the capacity of RPPs for slope repair design using an infinite slope approach.