Unmanned Aerial Vehicles (UAVs) have grown into a more powerful type of data transmission due to this rapid progress of evolution of wireless communication technology. In addition, UAVs have been proven to be effective in a variety of applications, including intelligent transport, disaster risk management, surveillance, and environmental monitoring. When UAVs are deployed randomly, however, they can effectively accomplish challenging tasks because of the UAVs’ has low battery capacity, quick mobility, and dynamic in nature orientation. Due to this reason, a new technique must be designed for an optimal energy efficient UAV clustering as well as data routing protocols. In this work proposes a new hybrid model of Emperor penguin-based Generalized Approximate Reasoning Based Intelligent Control (EP-GARIC) cluster-based network topology. Furthermore, the optimal routing function is achieved by the proposed Artificial Jellyfish Optimization (AJO). The implementation of this research is carried out using Network Simulator (NS2). The simulation results displays the effective performance of the suggested approach in terms of reduced energy consumption, improved packet delivery ratio, reduced loss, and so on over compared to the conventional approaches