2019 11th International Conference on Advanced Computing (ICoAC) 2019
DOI: 10.1109/icoac48765.2019.246843
|View full text |Cite
|
Sign up to set email alerts
|

Performance Evaluation of Deep Learning Algorithms in Biomedical Document Classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
14
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 44 publications
(22 citation statements)
references
References 12 publications
0
14
0
1
Order By: Relevance
“…There is a consensus around the use of confusion matrix and ranking metrics to evaluate multilabel classification models (at inference time) (Koyejo et al, 2015;Behera et al, 2019;Wu and Zhou, 2017). Notably Precision and Recall.…”
Section: Metrics: Evaluation At Inference Timementioning
confidence: 99%
See 1 more Smart Citation
“…There is a consensus around the use of confusion matrix and ranking metrics to evaluate multilabel classification models (at inference time) (Koyejo et al, 2015;Behera et al, 2019;Wu and Zhou, 2017). Notably Precision and Recall.…”
Section: Metrics: Evaluation At Inference Timementioning
confidence: 99%
“…Weighted micro F 1 (Behera et al, 2019) is similar but includes weighing to account for class imbalance, i.e., weighing each class by the number of ground-truth positives:…”
Section: Evaluation Metricsmentioning
confidence: 99%
“…Depending on these attribute values, gynecologists could classify the state of fetal as normal, pathologic, or suspicious state (NSP) class. Therefore, it is critical to visualize [ 44 ] CTG attributes by using WEKA version 3.8.4 [ 30 – 45 ] tools, as in Figure 3 . The attribute is drawn to illustrate a visual qualitative understanding of the distribution.…”
Section: Resultsmentioning
confidence: 99%
“…Eşitlik (4), Eşitlik (5) ve Eşitlik (6)'da ise hassasiyet değeri, hatırlama değeri ve F1 skor değerinin ağırlıklı ortalamaları gösterilmiştir. Eşitliklerdeki n değeri veri setindeki sınıf sayısını; P1, P2, … , Pn dizisi ise her bir sınıf için hesaplanan hassasiyet değerini; R1, R2, … , Rn ise her bir sınıf için hesaplanan hatırlama değerini göstermektedir (Behera & Kumaravelan, 2019) (Vani & Rao, 2019 (Goutte & Gaussier, 2005) (David MW Powers, 2015.…”
Section: Araştırma Sonuçları Ve Tartışmaunclassified