Pocket Switched Networks (PSN) represent a particular remittent network for direct communication between the handheld mobile devices. Compared to traditional networks, there is no stable topology structure for PSN where the nodes observe the mobility model of human society. It is a kind of Delay Tolerant Networks (DTNs) that gives a description to circulate information among the network nodes by the way of taking the benefit of transferring nodes from one area to another. Considering its inception, there are several schemes for message routing in the infrastructure-less environment in which human mobility is only the best manner to exchange information. For routing messages, PSN uses different techniques such as Distributed Expectation-Based Spatio-Temporal (DEBT) Epidemic (DEBTE), DEBT Cluster (DEBTC), and DEBT Tree (DEBTT). Understanding on how the network environment is affected for these routing strategies are the main motivation of this research. In this paper, we have investigated the impact of network nodes, the message copies per transmission, and the overall carrying out of these routing protocols. ONE simulator was used to analyze those techniques on the basis of delivery, overhead, and latency. The result of this task demonstrates that for a particular simulation setting, DEBTE is the best PSN routing technique among all, against DEBTC and DEBTT.