2015
DOI: 10.7763/ijke.2015.v1.24
|View full text |Cite
|
Sign up to set email alerts
|

Performance Evaluation of Different Classifier for Eye State Prediction Using EEG Signal

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
4

Year Published

2016
2016
2024
2024

Publication Types

Select...
3
2
2

Relationship

1
6

Authors

Journals

citations
Cited by 13 publications
(10 citation statements)
references
References 13 publications
0
6
0
4
Order By: Relevance
“…The accuracy towards the classification changed very less and this analysis outcome shown in table [3], figure [6]. The Confusion matrix shown in figure [5] and ROC curve shown in figure [7], evaluate the classifier performance here the classifier is Instance based classifier (K*), the classification accuracy is computed and it is mapped in table [3]. CONCLUSION This is the first study to investigate the characteristics of Most Non Dominant feature from feature space they are less responsible to build the classification model, the MND set always gives concept which feature removal sufficiently reduce space and time requirement to build the classification model.…”
Section: Proposed Methodology For Mnd Setmentioning
confidence: 99%
See 1 more Smart Citation
“…The accuracy towards the classification changed very less and this analysis outcome shown in table [3], figure [6]. The Confusion matrix shown in figure [5] and ROC curve shown in figure [7], evaluate the classifier performance here the classifier is Instance based classifier (K*), the classification accuracy is computed and it is mapped in table [3]. CONCLUSION This is the first study to investigate the characteristics of Most Non Dominant feature from feature space they are less responsible to build the classification model, the MND set always gives concept which feature removal sufficiently reduce space and time requirement to build the classification model.…”
Section: Proposed Methodology For Mnd Setmentioning
confidence: 99%
“…The present work is performed with EEG electrode data having 16 electrodes and 14892 instances [4,5]. This uses the instance based classifier (K*), because based on statistic of data and nature of data spread over the corpus found it is best among other classifier the result of this present in literature [6,7], [28], [33], [38]. Method selects either one electrode, two electrode or three electrodes based on how much search space the corpus wants to reduce.…”
Section: Introductionmentioning
confidence: 99%
“…Además, Rsler y Suendermann [26] generan un corpus con cerca de 15, 000 muestras y someten los datos a 42 clasificadores auxiliándose de la plataforma WEKA [29]. [27,28,30,31] utilizan el mismo corpus( [26]) para aplicar otros enfoques de clasificación a los ya reportados. Fig.…”
Section: Electroencefalogramasunclassified
“…Lo que se propone en esta investigación es tratar de mejorar la precisión de clasificación de algunas técnicas reportadas en el estado del arte, específicamente se trata de mejorar la precisión de SVM en [27] y del perceptrón multi-capa utilizado en [26,31]. Además se pretende verificar la precisión de k-NN debido a que en [26,27,28,31] se reporta una precisión de clasificación variable para 1-NN al utilizar WEKA. Por otra parte se someterá al conjunto de datos a un ACP, la cual es una técnica de extracción de características basada en la varianza, después de aplicar ACP se pretende verificar si k-NN, SVM y RNA logran mejorar la precisión reportada en la literatura utilizando el conjunto de datos original.…”
Section: Método Propuestounclassified
See 1 more Smart Citation