Early version, also known as pre-print Link to publication from Aalborg University
Citation for published version (APA):Yang, W., Zhao, Y., Liso, V., & Brandon, N. (2014). Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China. Energy and Buildings, 80, 613-622. https://doi.org/10.1016/j.enbuild.2014.05.015 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
t r a c tFuel cell based micro-CHP systems are expected to be one of the most promising technologies for implementation in the residential sector. Since the design and operation of such CHP systems are greatly dependent upon the seasonal atmospheric conditions, it is important to evaluate their performance under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability of the micro-CHP to cover the heat and electricity demand of a 70 m 2 single-family apartment with an average number of occupants of 3 is evaluated. A detailed model of the micro-CHP unit coupled with a hot water storage tank and an auxiliary boiler is developed. System design trade-offs are discussed to determine the optimal match between the energy demand of the household for different climates across China and the energy supply of the micro-CHP during the whole year. Moreover, criteria for sizing the system components of the micro-CHP are specifically addressed. The developed methodology can be applied to different types of residence with different load profiles.