We address the issue of human activity recognition by introducing the multiclass relevance vector machine (mRVM), the current state-of-the-art kernel machine learning technology given the multiclass classification problems (actually, activity recognition can commonly be viewed as a multiclass classification problem). Under our proposed recognition framework, the required procedure consists of three functional cascade modules: a. detecting the human silhouette blobs from the image sequence by the background subtraction method; b. extracting the shape and the motion features from the variation energy image (VEI); and c. sending the obtained features to the mRVM and recognizing the human activity. There are two types of mRVM: the constructive mRVM 1 and the top-down mRVM 2 . We performed 10 times three-fold crossvalidation on the Weizmann benchmark data set to examine the effectiveness of the proposed method. We also compared our method with other existing approaches, and the experimental results show that the proposed method offers superior performance. In summary, the mRVM, especially the mRVM 2 , has advantages both in terms of recognition rate and sparsity, along with a simple feature extraction process. The mRVM also significantly simplifies the classification process, by comparison with traditional binary-tree style multiclass classifiers. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).