HCV screening depends mainly on a one-assay anti-HCV testing strategy that is subject to an increased false-positive rate in low-prevalence populations. In this study, a two-assay anti-HCV testing strategy was applied to screen HCV infection in two groups, labelled group one (76,442 people) and group two (18,415 people), using Elecsys electrochemiluminescence (ECL) and an Architect chemiluminescent microparticle immunoassay (CMIA), respectively. Each anti-HCV-reactive serum was retested with the other assay. A recombinant immunoblot assay (RIBA) and HCV RNA testing were performed to confirm anti-HCV positivity or active HCV infection. In group one, 516 specimens were reactive in the ECL screening, of which CMIA retesting showed that 363 (70.3%) were anti-HCV reactive (327 positive, 30 indeterminate, 6 negative by RIBA; 191 HCV RNA positive), but 153 (29.7%) were not anti-HCV reactive (4 positive, 29 indeterminate, 120 negative by RIBA; none HCV RNA positive). The two-assay strategy significantly improved the positive predictive value (PPV, 64.1% & 90.1%, P < 0.05). In group two, 87 serum specimens were reactive according to CMIA screening. ECL showed that 56 (70.3%) were anti-HCV reactive (47 positive, 8 indeterminate, 1 negative by RIBA; 29 HCV RNA positive) and 31 (29.7%) were anti-HCV non-reactive (25 negative, 5 indeterminate, 1 positive by RIBA; none HCV RNA positive). Again, the PPV was significantly increased (55.2% & 83.9%, P < 0.05). Compared with a one-assay testing strategy, the two-assay testing strategy may significantly reduce false positives in anti-HCV testing and identify inactive HCV infection in low-seroprevalence populations.