2022
DOI: 10.1177/09670335221097236
|View full text |Cite
|
Sign up to set email alerts
|

Performance evaluation of variable selection methods coupled with partial least squares regression to determine the target component in solid samples

Abstract: Variable selection can improve the robustness and prediction accuracy of partial least squares (PLS) regression models and decrease the calculation time by selecting the optimal subset of variables in multivariate calibration. In this study, the performance of two variable selection methods for wavelength interval and individual wavelength coupled with partial least squares regression are investigated by employing the experimental data of asiaticoside (AS) and madecassoside (MS) contents in centella total gluc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 27 publications
0
0
0
Order By: Relevance