The performance of conventional repetitive controller (RC) deteriorates under frequency variations and system uncertainties. Due to limited bandwidth, it is also a trivial task to stabilize the conventional RC. This paper proposes a higher-order repetitive controller (HORC) with linear phase lead as a stabilizing compensator and zero-phase tracking error (ZPTE) compensator. The periodic signal generator, used by the HORC, offers relatively high gains in the neighborhood of tuned frequency and its harmonics. Stability conditions for higher-order repetitive (HOR) control system, including the phase lead compensator, are presented. The proposed solution is applied to repetitive current control of a two-level gridconnected inverter. Simulation and experimental results show that the HORC designed using the phase lead compensation is robust to frequency variation in reference/disturbance and system uncertainties. INDEX TERMS Repetitive controller, frequency variation, higher-order repetitive controller, phase lead.