This paper addresses the control task of a wireless power transfer (WPT) charger designed for electric vehicles (EVs). The challenge is to maintain a constant battery charging current when the WPT is controlled on the ground side. Indeed, the intermittent latency involved in the wireless data communication between the ground and vehicle sides leads to system instability. To overcome this issue, a new control approach has been proposed in this paper. The proposed technique ensures indirect control of the battery charging current through control of the current on the ground side. The control technique relies on an adaptive hill-climbing algorithm in conjunction with a PI-based controller. The adaptive parameter is adjusted online, during the operation of the charger, only when a new measure of the battery charging current is received on the primary side. This makes it possible to avoid the need for real-time wireless data communication. It should be noted that this aspect is crucial in ensuring the controller’s robustness and stability of the system regardless of potential delays in wireless communication and large misalignments between the coils. The validity of the proposed control technique has been confirmed through simulation. In addition, experimental validation, using a laboratory test bed, demonstrated satisfactory results.