Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Federated learning (FL) has emerged as a promising paradigm for secure distributed machine learning model training across multiple clients or devices, enabling model training without having to share data across the clients. However, recent studies revealed that FL could be vulnerable to data leakage and reconstruction attacks even if the data itself are never shared with another client. Thus, to resolve such vulnerability and improve the privacy of all clients, a class of techniques, called privacy-preserving FL, incorporates encryption techniques, such as homomorphic encryption (HE), to encrypt and fully protect model information from being exposed to other parties. A downside to this approach is that encryption schemes like HE are very compute-intensive, often causing inefficient and excessive use of client CPU resources that can be used for other uses. To alleviate this issue, this study introduces a novel approach by leveraging smart network interface cards (SmartNICs) to offload compute-intensive HE operations of privacy-preserving FL. By employing SmartNICs as hardware accelerators, we enable efficient computation of HE while saving CPU cycles and other server resources for more critical tasks. In addition, by offloading encryption from the host to another device, the details of encryption remain secure even if the host is compromised, ultimately improving the security of the entire FL system. Given such benefits, this paper presents an FL system named FedNIC that implements the above approach, with an in-depth description of the architecture, implementation, and performance evaluations. Our experimental results demonstrate a more secure FL system with no loss in model accuracy and up to 25% in reduced host CPU cycle, but with a roughly 46% increase in total training time, showing the feasibility and tradeoffs of utilizing SmartNICs as an encryption offload device in federated learning scenarios. Finally, we illustrate promising future study and potential optimizations for a more secure and privacy-preserving federated learning system.
Federated learning (FL) has emerged as a promising paradigm for secure distributed machine learning model training across multiple clients or devices, enabling model training without having to share data across the clients. However, recent studies revealed that FL could be vulnerable to data leakage and reconstruction attacks even if the data itself are never shared with another client. Thus, to resolve such vulnerability and improve the privacy of all clients, a class of techniques, called privacy-preserving FL, incorporates encryption techniques, such as homomorphic encryption (HE), to encrypt and fully protect model information from being exposed to other parties. A downside to this approach is that encryption schemes like HE are very compute-intensive, often causing inefficient and excessive use of client CPU resources that can be used for other uses. To alleviate this issue, this study introduces a novel approach by leveraging smart network interface cards (SmartNICs) to offload compute-intensive HE operations of privacy-preserving FL. By employing SmartNICs as hardware accelerators, we enable efficient computation of HE while saving CPU cycles and other server resources for more critical tasks. In addition, by offloading encryption from the host to another device, the details of encryption remain secure even if the host is compromised, ultimately improving the security of the entire FL system. Given such benefits, this paper presents an FL system named FedNIC that implements the above approach, with an in-depth description of the architecture, implementation, and performance evaluations. Our experimental results demonstrate a more secure FL system with no loss in model accuracy and up to 25% in reduced host CPU cycle, but with a roughly 46% increase in total training time, showing the feasibility and tradeoffs of utilizing SmartNICs as an encryption offload device in federated learning scenarios. Finally, we illustrate promising future study and potential optimizations for a more secure and privacy-preserving federated learning system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.