2022
DOI: 10.1088/1755-1315/1083/1/012082
|View full text |Cite
|
Sign up to set email alerts
|

Performance Improvement of Grid Mapping K-Means with the Average Value at Grid Point

Abstract: K-Means is a method that is well-known for its ability to handle large datasets, but is often stuck in a local optima state. This issue happens because K-Means generally uses random numbers to serve as the center point (centroid) of each cluster, and places each instance based on the proximity of the distance using Euclidean Distance. Hence, the concept of density parameter was developed, which tries to determine the ideal centroid based on the determination of several grid points in each existing cluster. The… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 10 publications
0
0
0
1
Order By: Relevance
“…K-Means Clustering dapat diterapkan pada kasus dengan jumlah objek yang sangat banyak [12]. Algoritma K-means adalah algoritma pengelompokan iteratif sederhana [13] dan yang paling populer digunakan dengan menggunakan jarak sebagai metriknya [14].…”
Section: Algoritma K-meansunclassified
“…K-Means Clustering dapat diterapkan pada kasus dengan jumlah objek yang sangat banyak [12]. Algoritma K-means adalah algoritma pengelompokan iteratif sederhana [13] dan yang paling populer digunakan dengan menggunakan jarak sebagai metriknya [14].…”
Section: Algoritma K-meansunclassified