Redox flow batteries are an emergent technology in the field of energy storage for power grids with high renewable generator penetration. The copper redox flow battery (CuRFB) could play a significant role in the future of electrochemical energy storage systems due to the numerous advantages of its all-copper chemistry. Furthermore, like the more mature vanadium RFB technology, CuRFBs have the ability to independently scale power and capacity while displaying very fast response times that make the technology attractive for a variety of grid-supporting applications. As with most batteries, the efficient operation of a CuRFB is dependent on high-quality control of both the charging and discharging process. In RFBs, this is typically complicated by highly nonlinear behaviour, particularly at either extreme of the state of charge. Therefore, the focus of this paper is the development and validation of a first-principle, control-appropriate model of the CuRFBs electrochemistry that includes the impact of the flow, charging current, and capacity fading due to diffusion and subsequent comproportionation. Parameters for the proposed model are identified using a genetic algorithm, and the proposed model is validated along with its identified parameters using data obtained from a single-cell CuRFB flow battery as well as a simpler diffusion cell design. The proposed model yields good qualitative fits to experimental data and physically plausible concentration estimates and appears able to quantify the long-term state of health due to changes in the diffusion coefficient