(2017) Investigation of thermal breakage and heat transfer in single, insulated and laminated glazing under fire conditions. Applied Thermal Engineering, 125 . pp. 662-672.
Permanent WRAP URL:http://wrap.warwick.ac.uk/92398
Copyright and reuse:The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
A note on versions:The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription. glass. The thermal resistance from the air gap and fire side glass pane was found to play a key role for the ambient side pane of the insulated glazing. Although both panes of the laminated glazing broke, it could be held together by the layer of gel, effectively avoiding the formation of a new vent. Numerical simulations were performed to investigate the heat transfer process through the glazing panels and the temperatures in the glazing were predicted well. Suggestions for glass fire resistance design are proposed.