It is forecast that in the future, alternative fuels derived from non-petroleum sources will become the basic propellant for turbine aircraft engines. Currently, five types of aviation turbine fuel containing synthesized hydrocarbons are certified and accepted, and allow adding a maximum of 50% of synthetic component to conventional fuel. The experimental performance and the emission characteristics of a turbojet engine were investigated in this paper. The studies were conducted with the use of a miniature turbojet engine, which is the main component of a laboratory test rig. The test rig is an interesting solution for engine research, due to the fact that studies concerning fullscale aircraft engines are very complex and expensive. The literature of the subject contains many papers using smallscale turbojet engines for testing alternative fuels. However, most of them concern components of fuels, e.g. biodiesel, butanol, which do not have direct application in aviation. Two different fuel samples, a conventional Jet A-1 fuel and a blend of 48% synthesized paraffinic kerosene from hydroprocessed esters and fatty acids process with Jet A-1 were tested. This process is one of the routes of producing alternative fuel for aviation, approved by ASTM standard. The test rig studies were performed according to a specific profile of engine test, which models different modes of a turbojet engine's operation. The obtained results are compared in relation to the results for neat Jet A-1 fuel and then discussed.