Spectral selective absorption film (SSAF), a solar control film, has a special energy-saving mechanism. In the previous studies of SSAF coated glazing systems, thermal parameters (global thermal transmittance (U) and solar heat gain coefficient (SHGC)) calculated by traditional algorithms were not verified. In order to evaluate the energy-saving effect of SSAF coated glazing systems accurately, U and the SHGC were calibrated and then used for energy consumption simulation. Firstly, the simulation models of the heat transfer process of SSAF coated glazing systems were established by COMSOL Multiphysics, considering simplified linear attenuation of radiative transfer. After being validated, the simulation models were used for the calibration of U and SHGC by the Multiple Linear Regression (MLR) model. As a result, the calibration coefficients of U and SHGC are 1.126 and 1.689, respectively. Secondly, the thermal parameters of SSAF coated glazing systems calibrated by the calibration coefficients were used for a building energy consumption simulation case. The result showed that the inner surface is the best coating position for single glazing systems (SG), while the outer surface is the best coating position for double glazing systems (DG) in hot summer and cold winter zone, hot summer and warm winter zone and the moderate zone of China.