The shear stirrups and bend-up reinforcement in ultra-high-performance concrete (UHPC) beams could potentially be excluded due to the superior mechanical properties of UHPC. This paper reports the new findings of an experimental research into the factors that influence the shear behavior of non-stirrup UHPC beams. Fourteen beams were tested in shear, comprising twelve non-stirrup UHPC beams and two normal concrete (NC) beams reinforced with stirrups. The test variables included the steel fiber volume content (2.0%, 1.5%, and 0%), the shear span-to-effective-depth ratio (1.2, 1.8, 2.0, and 3.1), beam width (150 mm and 200 mm), and beam height (300 mm, 350 mm, and 400 mm). The results demonstrated that the steel fiber volume content had a significant influence on the shear behavior of the non-stirrup UHPC beams. The failure modes of the beams without steel fibers were typically brittle, whereas those reinforced with steel fibers exhibited ductile failure. The shear resistance of the beams could be significantly enhanced by the addition of steel fibers in the concrete mix. Furthermore, the post-cracking load-bearing performance of the beams could also be markedly improved by the addition of steel fibers. In addition, the shear span-to-effective-depth ratio had a considerable impact on the failure mode and the ultimate shear strength of the tested beams. The contribution of steel fibers to the shear capacity of the UHPC beams was observed to increase as the shear span-to-effective-depth ratio increased. The French standard formulae tended to overestimate the contribution of steel fibers, and the calculation results were found to be more accurate for UHPC beams with a moderate shear span-to-effective-depth ratio (around 2.0). Moreover, the French standard formulae demonstrated greater accuracy at a larger beam height for calculating the contribution of UHPC matrix.