2022
DOI: 10.33395/sinkron.v7i4.11887
|View full text |Cite
|
Sign up to set email alerts
|

Performance of Deep Learning Inception Model and MobileNet Model on Gender Prediction Through Eye Image

Abstract: Convolutional neural network (CNN) is one of the neural networks used in image data. CNN has a good ability to detect objects in an image. This study discusses the comparison of two deep learning models based on convolutional neural network, namely the Inception-V3 method and the MobileNet method. Both algorithms are analyzed fairly on gender classification using eye images. There have been many research completions that have conducted studies on gender classification based on faces, but gender classification … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 12 publications
0
2
0
Order By: Relevance
“…Using the NIST dataset and implementing Contrast Limited Adaptive Histogram Equalization (CLAHE) resulted in an accuracy of up to 95.05%. Meanwhile, Listio [12] implemented CNN to detect gender based on eye image. She compared two models of CNN, namely Inception-V3 and MobileNet to analyze a dataset of 1251 male and 1430 female eyes.…”
Section: Literatures Reviewmentioning
confidence: 99%
“…Using the NIST dataset and implementing Contrast Limited Adaptive Histogram Equalization (CLAHE) resulted in an accuracy of up to 95.05%. Meanwhile, Listio [12] implemented CNN to detect gender based on eye image. She compared two models of CNN, namely Inception-V3 and MobileNet to analyze a dataset of 1251 male and 1430 female eyes.…”
Section: Literatures Reviewmentioning
confidence: 99%
“…In computer vison, CNN has been known as a powerful visual model as well as producing an accurate hierarchy of segmentation features. The model has also been known to make predictions relatively faster than other algorithms while maintaining competitive performance at the same time [9].…”
Section: Introductionmentioning
confidence: 99%