Purpose of the present theoretical investigation is to analyze the effects of surface roughness on the steady-state performance of stepped circular hydrostatic thrust bearings lubricated with non-Newtonian Rabinowitsch type fluids. Results for film pressure and load-carrying capacity have been plotted and analyzed on the basis of numerical results. To take the effects of surface roughness into account, Christensen theory of rough surface has been adopted. The expression for pressure gradient has been derived by means of the energy integral approach. This approach avoids the derivation of Reynolds’ equation. The numerical results for film pressure and load capacity have been obtained using Mathematica. It was observed that in comparison with smooth surfaces, dimensionless film pressure and load capacity is lower for longitudinal roughness and higher for circular roughness patterns with and the variations are significant. Load carrying capacity decreases with the increase of longitudinal roughness and, increases with the increase of circular roughness. Further, the effects of surface roughness and non-Newtonian lubricants are significant for larger values of inertia parameter. Because of the closeness of results to the experimental values, this study will be helpful in the design of circular hydrostatic thrust bearings.