With the development of printed electronics technology, the demand for printed conductive inks had also put forward higher standards. The shortcomings of traditional printed circuit boards, such as complex technology, consumables, and pollution, had also been resolved with the development of 3D printing technology. In this paper, low-content silver nanoparticles were blended with graphene alcohol slurry and dissolved in a non-polluting solvent such as absolute ethanol. The synergistic effect of the composite of the hexagonal structure of the graphene sheet and the silver nanoparticles improved the ink’s performance of electrical conductivity, adding water-based polyurethane/acrylic resin system to improve the adhesion between ink and paper. The conductive ink can be used to 3D print circuit circuits on paper. After drying, the resistance was measured. After the battery, diode, and switch were connected, a circuit diagram was made. After pressing the diode emits was lighted. This work is expected to be applied to flexible circuit boards to provide basic research.