Abstract. Shared-nothing, parallel text retrieval systems require an inverted index, representing a document collection, to be partitioned among a number of processors. In general, the index can be partitioned based on either the terms or documents in the collection, and the way the partitioning is done greatly affects the query processing performance of the parallel system. In this work, we investigate the effect of these two index partitioning schemes on query processing. We conduct experiments on a 32-node PC cluster, considering the case where index is completely stored in disk. Performance results are reported for a large (30 GB) document collection using an MPI-based parallel query processing implementation.