2023
DOI: 10.1177/02841851231158730
|View full text |Cite
|
Sign up to set email alerts
|

Performance of machine learning-based coronary computed tomography angiography for selecting revascularization candidates

Abstract: Background Limited studies have investigated the accuracy of therapeutic decision-making using machine learning-based coronary computed tomography angiography (ML-CCTA) compared with CCTA. Purpose To investigate the performance of ML-CCTA for therapeutic decision compared with CCTA. Material and Methods The study population consisted of 322 consecutive patients with stable coronary artery disease. The SYNTAX score was calculated with an online calculator based on ML-CCTA results. Therapeutic decision-making wa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 42 publications
0
0
0
Order By: Relevance