. Auditory cortical responses to electrical stimulation of the inferior colliculus: implications for an auditory midbrain implant. J Neurophysiol 96: 975-988, 2006. First published May 24, 2006 doi:10.1152/jn.01112.2005. The success and limitations of cochlear implants (CIs) along with recent advances in deep brain stimulation and neural engineering have motivated the development of a central auditory prosthesis. In this study, we investigated the effects of electrical stimulation of the inferior colliculus central nucleus (ICC) on primary auditory cortex (A1) activity to determine the potential benefits of an auditory midbrain implant (AMI). We recorded multiunit activity in A1 of ketamine-anesthetized guinea pigs in response to single-pulse (200 s/phase) monopolar stimulation of the ICC using multisite silicon-substrate probes. We then compared measures of threshold, dynamic range, and tonotopic spread of activation for ICC stimulation with that of published data for CI stimulation. Our results showed that compared with cochlear stimulation, ICC stimulation achieved: 1) thresholds about 8 dB lower; 2) dynamic ranges Ն4 dB greater; and 3) more localized, frequency-specific activation, even though frequency specificity was partially lost at higher stimulus levels for low-frequency ICC regions. Our results also showed that stimulation of rostral ICC regions elicited lower thresholds but with greater activation spread along the tonotopic gradient of A1 than did stimulation of more caudal regions. These results suggest that an AMI may improve frequency and level coding with lower energy requirements compared with CIs. However, a trade-off between lower perceptual thresholds and better frequency discrimination may exist that depends on location of stimulation along the caudorostral dimension of the ICC. Overall, this study provides the foundation for future AMI research and development.