The Richtmyer-Meshkov instability of interfaces separating elastic-plastic materials from vacuum (heavy-light configuration) is studied by means of computational techniques. A fully Eulerian multimaterial algorithm that solves consistently the Euler equations and the time evolution of the deformations in the material is applied to three distinct materials (copper, aluminum, and stainless steel). If a perfectly plastic constitutive relation is considered, an empirical law is computed that relates the long-term perturbation amplitude of the interface, its maximum growth rate, the initial density, and the yield stress of the material. It is shown that this linear relation can be extended to materials that follow more complex plastic behavior which can account for rate dependency, hardening, and thermal softening, and to situations in which small-perturbation theory is no longer valid. In effect, the yield stress computed from measurements of the long-term amplitude and maximum growth rate closely matches the von Mises stress found at the interface of solid materials for a wide range of cases with different initial parameters.