In this paper we shall demonstrate how a polyphasecoded radar waveform can be implemented using a continuous phase modulation (CPM) framework so as to achieve spectral containment while maintaining a constant envelope to maximize energy-on-target. Current modulation techniques such as derivative phase shift keying (DPSK) and minimum shift keying (MSK), which are applicable to binary-coded waveforms, are well-known implementation schemes for spectral containment. The CPM implementation is applicable to polyphase codes and can also achieve better spectral containment, though a byproduct is increased range sidelobes that result due to the deviation from the idealized code (implicitly defined for squared-shaped chips). To ameliorate the increased range sidelobes, a version of Least-Squares mismatched filtering is employed that accommodates the continuous nature of the CPM structure. Also, continuous rise/fall-time transitions of the pulse are addressed as part of the holistic implementation of the CPM-based waveform. It is observed that for the CPM implementation the rise/fall-time becomes the limiting factor on spectral containment and a rather simple scheme based on Chireaux out-phasing is suggested as a means to "slow down" the pulse rise/fall.