We report the discovery of a 1D crystalline structure of aluminum oxyhydroxide. It was found in a commercial product of fibrous pseudoboehmite (PB), γ-AlOOH, synthesized easily with low cost. The thinnest fiber found was a ribbon-like structure of only two layers of an Al-O octahedral double sheet having a submicrometer length along its c axis and 0.68-nm thickness along its b axis. This thickness is only slightly larger than half of the lattice parameter of the b-axis unit cell of the boehmite crystal (b/2 = 0.61 nm). Moreover, interlayer splittings having an average width of 1 nm inside the fibrous PB are found. These wider interlayer spaces may have intercalation of water, which is suggested by density functional theory (DFT) calculation. The fibers appear to grow as almost isolated individual filaments in aqueous Al-hydroxide sols and the growth direction of fibrous PB is always along its c axis.ow-dimensional materials such as quantum dots (1), nanowires (2, 3), and nanosheets (4) have attracted interest in academia and industry. Carbon nanotubes (5), a typical 1D inorganic material, have been investigated widely, but new 1D inorganic materials prepared by a simple and reliable method have rarely been reported.The aluminum ore bauxite primarily comprises aluminum hydroxide possessing different crystalline forms. The thermal dehydration of aluminum hydroxide produces alumina Al 2 O 3, one of the most important materials in modern industries. γ-Boehmite (γ-AlOOH) (6) is a typical aluminum oxyhydroxide with a crystal structure similar to that of lepidocrocite (γ-FeOOH) (7). These metal oxyhydroxides, represented by γ-MO(OH), where M = Fe, Ni, Mn, Sc, Ti, etc., have attracted interest in fields from energy to medicine. In a nickel-hydrogen battery, the formation of poorly crystalline γ-NiOOH on the cathode has been shown to cause the memory effect of the battery (8). Titanate nanosheets have recently attracted attention in the electronics community because of their semiconducting properties (9). Hydrogen generation by aluminum-water reactions for onboard vehicular hydrogen storage (10) and the radiolytic generation of hydrogen in conjunction with metal corrosion in water in nuclear energy and waste systems (11) both involve aluminum hydroxides as reaction products. Aluminum hydroxide has also been used as a vaccine adjuvant (12) and its biochemical mode of action in a recent medical technology is being investigated (13).Boehmite is synthesized by aging noncrystalline aluminum hydroxide sol in an aqueous solution at a specific pH, and it has the basic crystal structure of double sheet of a metal-oxygen octahedron layer piled up through hydrogen bonding, as illustrated in Fig. S1. Poorly crystallized boehmite, often called pseudoboehmite (PB), forms in various crystal morphologies, such as thin films, thin platelets, and nanometer-sized rods or fibers. Importantly, the characteristics of alumina Al 2 O 3 for industrial use prepared by thermal dehydration are influenced by the morphology of the starting boehmite c...