This paper concerns with theoretical investigation to predict the influence of cylindrical textures on the static and dynamic performance characteristics of hydrodynamic journal bearing system and the performance is compared with smooth surface bearing. The Reynolds equation governing the fluid–film between the journal and the bearing surface is solved numerically with the assistance of finite element method and the performance characteristics are evaluated as a function of eccentricity ratio, dimple depth and its location. In this study, four journal bearing configurations viz: smooth (non-textured), full-textured, partially textured-I, and partially textured-II are considered for the evaluation of theoretical results. The simulated results indicate that the influence of surface textures is more significant when the textures were created in upstream zone of 126°–286° and dimple aspect ratio nearly 1.0.