Precipitation is a fundamental component of the hydrologic cycle and is an extremely important variable in meteorological, climatological, and hydrological studies. Reliable climate information including accurate precipitation data is essential for identifying precipitation trends and variability as well as applying hydrologic models for purposes such as estimating (surface) water availability and predicting flooding. In this study, I compared precipitation rates from five reanalysis datasets and one analysis dataset—the European Centre for Medium-Range Weather Forecasts Reanalysis Version 5 (ERA-5), the Japanese 55-Year Reanalysis (JRA-55), the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), the National Center for Environmental Prediction/National Center for Atmospheric Research Reanalysis 1 (NCEP/NCAR R1), the NCEP/Department of Energy Reanalysis 2 (NCEP/DOE R2), and the NCEP/Climate Forecast System Version 2 (NCEP/CFSv2)—with the merged satellite and rain gauge dataset from the Global Precipitation Climatology Project in Version 2.3 (GPCPv2.3). The latter was taken as a reference due to its global availability including the oceans. Monthly mean precipitation rates of the most recent five-year period from 2019 to 2023 were chosen for this comparison, which included calculating differences, percentage errors, Spearman correlation coefficients, and root mean square errors (RMSEs). ERA-5 showed the highest agreement with the reference dataset with the lowest mean and maximum percentage errors, the highest mean correlation, and the smallest mean RMSE. The highest mean and maximum percentage errors as well as the lowest correlations were observed between NCEP/NCAR R1 and GPCPv2.3. NCEP/DOE R2 showed significantly higher precipitation rates than the reference dataset (only JRA-55 precipitation rates were higher), the second lowest correlations, and the highest mean RMSE.