Miniature patch antenna sensors have great potential in the field of structural health monitoring for crack propagation detection due to their small size and high sensitivity. A primary research focus has been achieving efficient miniaturization, with the performance of the dielectric layer playing a pivotal role. Studies have demonstrated that increasing the relative dielectric constant (εr) of the dielectric layer can reduce antenna size, but higher dielectric losses (tanδ) can lower radiation efficiency. This study identifies the optimal dielectric properties by examining the interplay between εr and tanδ to balance size reduction and radiation efficiency. Additionally, while increasing the dielectric layer’s thickness improves bandwidth and radiation efficiency, a thinner layer is preferred to maintain overall performance without compromising radiation efficiency. Furthermore, the resonant frequency of the smaller-sized patch antenna sensor exhibits greater detection sensitivity to crack propagation. These insights provide useful guidance for selecting effective dielectric layers and assist in the miniaturization design of antenna sensors.