The gas diffusion layer (GDL), as a key component of proton exchange membrane fuel cells (PEMFCs), plays a crucial role in PEMFC’s polarization performance, particularly in mass transport properties at high current densities. To elucidate the correlation between GDLs’ structure and their mass transport properties, a limiting current test with the H2 molecular probe was established and employed to investigate three representative GDLs with and without the microporous layer (MPL). By varying humidity and back pressure, the mass transport resistance of three GDLs was measured in an operating fuel cell, and an elaborate analysis of H2 transport was conducted. The results showed that the transport resistance (RDM) of GDLs was affected by the thickness and pore size distribution of the macroporous substrate (MPS) and the MPL. In the process of gas transport, the smaller pore size and thicker MPL increase the force of gas on the pore wall, resulting in an increase in transmission resistance. Through further calculation and analysis, the total transport resistance can be divided into pressure-related resistance (RP) and pressure-independent resistance (RNP). RP mainly originates from the transport resistance in both MPLs and the substrate layers of GDLs, exhibiting a linear relationship to the pressure; RNP mainly originates from the transport resistance in the MPLs. 29BC with thick MPL shows the largest RNP, and T060 without MPL shows the RNP = 0. This methodology enables in situ measurements of mass transport resistances for gas diffusion media, which can be easily applied for developing and deploying PEMFCs.