Uncertainties in predictive models for concrete structures performance can influence adversely the timing of management activities. A methodology has been developed that uses data obtained through proactive health monitoring to increase the confidence in predicted performance by reducing the associated uncertainties. Due to temporal and spatial variations associated with climatic changes, exposure conditions, workmanship, and concrete quality, the actual performance could vary at different locations of the member. In this respect, the use of multiple sensors may be beneficial, notwithstanding cost and other constraints. Two distinct cases are identified for which an updating methodology based on data from multiple sensors needs to be developed. In the first case the interest lies in improving the performance prediction for an entire member (or a structure) incorporating spatial and temporal effects. For this purpose, the member is divided into small zones with the assumption that a sensor can be located in each zone. In the second case, the objective is to minimise uncertainties in performance prediction, or to increase the redundancy of health monitoring systems, at critical locations. The development of updating methodologies for the abovementioned scenarios is described in this paper. Its implications on the management activities, for example, establishing the timing of principal inspections, are evaluated and discussed.